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1 Introduction

This is a report for my CSC495 project course taken under Professor Eugene Fiume on the implementation
of Tyler De Witt’s fluid simulation method for velocity fields representing fluid flow on the surface of a sphere
using spherical harmonics.

The method models incompressible fluids governed by the Navier Stokes by working in the vorticity space
by using harmonic basis functions over the given domain for the flow (in this case the surface of a sphere).
Vorticity measures the spin of a vector field, and is represented by the curl of the vector field, a rank 1 map
from S2 → R3 normal to the velocity space ⊂ T S2, the tangent space for S2. This means that the vorticity
must always be normal to the surface of the sphere. The vorticity is modeled by the spherical harmonics,
which are an orthogonal family of basis functions for finite energy functions on S2 → R, by attaching an r̂
direction to the image of the spherical harmonics. They are harmonic with respect to the Laplacian operator
which allows for a relatively trivial transformation into the velocity space of a fluid through 1

l∇× y
m
` where

ym` is a spherical harmonic basis function on the `th band.
The vorticity space is an infinite dimensional vector space, but the use of a finite number of spherical

harmonics basis functions can provide a good approximation of the vorticity space for simulation purposes.
In fact, the spherical harmonics are eigenfunctions on S2 and by ordering them by eigenvalues in increasing
order the later functions represent smaller scale vorticities, which provides the ability to chose the granularity
of simulations. The ability to chose the granularity of the simulation allows a user to decide what sort of
time vs performance trade off they want by choosing more or less basis functions or bands.

Because this method looks at an orthogonal family of basis functions the operators defining the change
of the vector field representing a fluid over time, particularly the Lie bracket, can be calculated using second
order polynomials of coefficients for spherical harmonics. This allows for all computations of changes of the
vorticity field to be calculated in the space of spherical harmonics, and thus many computations necessary
for the change of the vorticity over time can be reduced to the product of matrices. This is a significant
improvement in contrast to most modern methods that require meshing of the fluid’s domain and approximate
velocity fields over a discretized point sets on a domain. Such methods often suffer from ailments that this
method does not, such as the use of integration, which is both expensive and introduces numerical instability.
With this method all that is required is pre-computation of several relationships between basis vector fields,
particularly the Lie bracket which describes how the vorticity of each basis vector changes in reference to
the velocity field defined by another basis vector.

First I give an overview of the necessary functions, properties, and some background for the derivation
and then give the derivation itself.
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2 Equations

2.1 Associated Legendre Polynomials

The associated Legendre Polynomials are a family of harmonic polynomials used in the definition of spherical
harmonics. he associated Legendre polynomials are organized into bands, denoted by the subscript ` and
within each band there are 2`+ 1 polynomials.
Rodrigues’ Formula for associated Legendre polynomials:

Pm` (x) = (−1)m (1− x2)m/2
∂m

∂xm
(P`(x)) .

Part of the derivation that follows will require the ability to integrate triplets of associated Legendre poly-
nomials. These triple integrals were first mentioned by Gaunt in [?], and an algorithm described in [?]
calculates coefficients that correspond to the triple integrals in the following way:

2p+ 1
2

(p−m− µ)!
p+m+ µ)!

∫ 1

−1

Pmn P
µ
ν P

m+µ
p dt = a(m,n, ν, µ, p).

a(m,n, ν, µ, p) are the nonzero coefficients in the representation of the product of two associated Legendre
polynomials as a linear combination of associated Legendre polynomials.

Pmn P
µ
ν =

n+ν∑
p=|n−ν|

a(m,n, ν, µ, p)Pm+µ
p .

I also use several recurrence relations from Edmond’s Angular Momentum in Quantum Dynamics [?]:

Pm`+1(x)− xPm` (x)− (`+m)(1− x2)1/2Pm−1
` (x) = 0

(1− x2)1/2Pm+1
` (x)− 2mxPm` (x) + (`+m)(`−m+ 1)(1− x2)1/2Pm−1

` (x) = 0.

2.2 Spherical Harmonics

Spherical harmonics is a harmonic basis for S2 → F where F is either C or R. The complex spherical
harmonics are defined as

ym` (θ, φ) = Km
` P

m
` (cos(θ))eimφ

Km
` =

√
(2`+ 1)

4π
(`− |m|)!
(`+ |m|)!

where Pm` is an associated Legendre polynomial and Km
` is a normalization constant such that∫

S2
ym` y

µ
ν = δ`,νδm,µ

with δα,β being the Kronecker delta.
The real spherical harmonics are defined by:

ym` (θ, φ) =


√

2Km
` P

m
` (cos(θ)) cos(mφ) m > 0

P`(cos(θ)) m = 0√
2Km

` P
−m
` (cos(θ)) sin(mφ) m < 0

.

To simplify the notation I introduce the Tm : [0, 2π]⇒ [−1, 1] by

Tm(φ) =


√

2 cos(mφ) m > 0
1 m = 0√

2 sin(−mφ) m < 0
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which allows the real spherical harmonics to be defined by ym` = Km
` TmP

|m|
` Sometimes spherical harmonics

are parameterized with a t ∈ [−1, 1] rather than to θ ∈ [0, π]

ym` (t, φ) = Km
` T|m|(φ)P |m|` (t)

2.3 The Lie bracket

The Lie bracket measures the effects of one vector field upon another, It is notated as

[X,Y ]i =
n∑
j=1

(
Xj

∂Yi
∂xj
− Yj

∂Xi

∂xj

)
.

2.4 Curl on S2 → R
Since the vorticity vectors used only have r̂ components, all that is necessary is

∇×A =
(

1
sin θ

∂Ar
∂φ

)
θ̂ +

(
−∂Ar∂θ

)
φ̂.

2.5 Trigonometric Identities

These identities are necessary for solving the triple integral of sines and cosines.

cos(mφ) cos(m̄φ) =
cos((m− m̄)φ) + cos((m+ m̄)φ)

2

sin(mφ) sin(m̄φ) =
cos((m− m̄)φ)− cos((m+ m̄)φ)

2

sin(mφ) cos(m̄φ) =
sin((m+ m̄)φ) + sin((m− m̄)φ)

2

cos(mφ) sin(m̄φ) =
sin((m+ m̄)φ)− sin((m− m̄)φ)

2
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3 Derivations

3.1 Derivatives of spherical harmonics

If we differentiate an associated Legendre Polynomial from the Rodrigues formula we get:

∂Pm`
∂x

= (−1)m (−2x)(
m

2
(1− x2)m/2−1)

∂m

∂xm
(P`) + (−1)m (1− x2)m/2

∂m+1

∂xm+1
(P`)

= (
−mx
1− x2

)((1− x2)m/2) (−1)m
∂m

∂xm
(P`) + (

−1√
1− x2

)(−1)m+1 (1− x2)
m+1

2
∂m+1

∂xm+1
(P`)

= −
(

mx

1− x2
Pm` +

1√
1− x2

Pm+1
`

)
.

The derivatives of the φ term in spherical harmonics is defined by

∂Tm
∂φ

=

 −
√

2m sin(mφ) = mT−m(φ) m > 0
0 m = 0√

2m cos(mφ) = mT−m(φ) m < 0
= mT−m(φ).

The derivatives of real spherical harmonics are therefore as follows:

∂ym`
∂φ

=
∂

∂φ
(Km

` P
|m|
` Tm)

= (Km
` P

|m|
`

∂Tm
∂φ

)

= (Km
` P

|m|
` mT−mφ)

= my−m`
∂ym`
∂t

=
∂

∂t
(Km

` P
|m|
` Tm)

= −Km
` Tm

(
mt

1− t2
Pm` +

1√
1− t2

Pm+1
`

)
.

3.2 Velocity Fields Corresponding to Spherical Harmonics Vorticities

Vorticity is a vector field normal S2 where velocity vector field lies. Therefore it is natural to parameterize
the vorticity as a vector field exclusively in the r̂ direction. Since the dimensionality of the normal vector
field to S2 in R3 is 1, vorticity field can be mapped by radial spherical harmonics, which are the spherical
harmonics applied to r̂

ŷm` = ym` r̂

The velocity basis field Φk can be defined as

Φk = ∇× (∆−1φk) = ∇× (
1
λk
φk) =

1
λk

(∇× φk).
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Therefore the velocity basis field can be explicitly declared as

Φm` =
1
λm`
∇× ym` =

1
`

((
1

sin θ
∂ym`
∂φ

)
θ̂ +

(
−∂y

m
`

∂θ

)
φ̂

)
=

1
`

(( m

sin θ
y−m`

)
θ̂ +

(
Km
` Tm

(
m

t

1− t2
Pm` +

1√
1− t2

Pm+1
`

)
(
∂t

∂θ
)
)
φ̂

)
=

1
`

(( m

sin θ
y−m`

)
θ̂ +

(
Km
` Tm

(
m

cos θ
sin2 θ

Pm` +
1

| sin θ|
Pm+1
`

)
(− sin θ)

)
φ̂

)
=

1
`

(( m

sin θ
y−m`

)
θ̂ −

(
(m cot θ)ym` + (sign(sin θ))Km

` P
m+1
` Tm

)
φ̂
)
.

3.3 The Lie Bracket on S2

The Lie bracket [A,B] represents the effect of B upon A. If we let A be a velocity field on S2, it must be
tangent to S2 and have degenerate entries in the r̂ direciton. Similarly if we let B be normal to a velocity
field on S2 it must be normal to S2 and have degenerate entries in the θ̂ and φ̂ directions. Therefore when
we expand the Lie bracket we get the following for the α direction of the Lie bracket:

[A,B]α =
∑

β∈{θ̂,φ̂}

(
Aβ

∂Bα
∂β
−Bβ

∂Aα
∂β

)

= Aθ
∂Bα
∂θ

+Aφ
∂Bα
∂φ

.

Half of the terms above disappear because B is degenerate in θ̂ and φ̂. This also means β ∈ {θ̂, φ̂}, ∂B∂β = 0
as well.

[A,B]θ̂ = Aθ
∂Bθ
∂θ

+Aφ
∂Bθ
∂φ

= 0

[A,B]φ̂ = Aθ
∂Bφ
∂θ

+Aφ
∂Bφ
∂φ

= 0

[A,B]r̂ = Aθ
∂Br
∂θ

+Aφ
∂Br
∂φ

.

In the future a lack of subscript on a Lie bracket assumes the r̂ direction.

3.4 Calculation of Coefficient Matrix Entries

The entries of the coefficient matrices Cφα [φi, φj ] in this formulation are defined by the change in vorticity
field φj on a particle moving along φi and φj by means of the Lie bracket [ 1

λi
∇ × φi, φj ]. The coefficient

matrix entry Cφα [φi, φj ] = ai in the unique expansion of [ 1
λi
∇× φi, φj ] given by

[
1
λi
∇× φi, φj ] =

∞∑
α=0

φα.
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[∇× ŷm` , ŷm
′

`′ ] =
1

sin θ
∂ym`
∂φ

∂ym
′

`′

∂θ
− ∂ym`

∂θ

∂ym
′

`′

∂φ

=
1

sin θ
∂ym

′

`′

∂φ

∂ym`
∂t

∂t

∂θ
− ∂ym`

∂φ

∂ym
′

`′

∂t

∂t

∂θ

=

(
1

sin θ
∂ym

′

`′

∂φ

∂ym`
∂t
− ∂ym`

∂φ

∂ym
′

`′

∂t

)
∂t

∂θ

=
1

sin θ
(m′y−m

′

`′ )
(
−Km

` Tm

(
mt

1− t2
Pm` +

1√
1− t2

Pm+1
`

))
(− sin θ)

−(my−m` )
(
−Km′

`′ Tm

(
m′t

1− t2
Pm

′

`′ +
1√

1− t2
Pm

′+1
`′

))
(− sin θ)

= (m′y−m
′

`′ )
(
Km
` Tm

(
mt

1− t2
Pm` +

1√
1− t2

Pm+1
`

))
−(my−m` )

(
Km′

`′ T
′
m

(
m′t

1− t2
Pm

′

`′ +
1√

1− t2
Pm

′+1
`′

)√
1− t2

)
= (m′y−m

′

`′ )
(
Km
` Tm

(
mt

1− t2
Pm` +

1√
1− t2

Pm+1
`

))
−(my−m` )

(
Km′

`′ Tm

(
m′t√
1− t2

Pm
′

`′ + Pm
′+1

`′

))

Since spherical harmonics are orthonormal we can integrate the above equation with a spherical harmonics
basis function’s dual basis, ȳµν to calculate Cyµν [ym` , y

m′

`′ ] = αµν from the summation

[
1
l
∇× ŷm` , ŷm

′

`′ ] =
∞∑
ν=0

ν∑
µ=−ν

aµνy
µ
ν

Since we are really dealing with real spherical harmonics the conjugate becomes unneccessary. The calculation
is as follows:

aµν =
∫ 2π

0

∫ π

0

yµν [
1
l
∇× ŷm` , ŷm

′

`′ ]dθdφ

=
∫ 2π

0

∫ π

0

yµν

(
1

sin θ
∂ym

′

`′

∂φ

∂ym`
∂t
− ∂ym`

∂φ

∂ym
′

`′

∂t

)
∂t

∂θ
dθdφ

=
1
`

∫ 2π

0

∫ 1

−1

 (m′y−m
′

`′ )
(
Km
` Tm

(
mt

1−t2P
m
` + 1√

1−t2P
m+1
`

))
−(my−m` )

(
Km′

`′ Tm

(
m′t√
1−t2P

m′

`′ + Pm
′+1

`′

))  yµν dtdφ

=
1
`

∫ 2π

0

∫ 1

−1

(m′y−m
′

`′ )Km
` Tm

(
mt

1− t2
Pm` +

1√
1− t2

Pm+1
`

)
yµν dtdφ

−1
`

∫ 2π

0

∫ 1

−1

(
(my−m` )Km′

`′ Tm

(
m′t√
1− t2

Pm
′

`′ + Pm
′+1

`′

))
yµν dtdφ

=
1
`
Km
` K

m′

`′ K
µ
ν

∫ 2π

0

TmT−m′Tµdφ

∫ 1

−1

m′
(

mt

1− t2
Pm` +

1√
1− t2

Pm+1
`

)
Pm

′

`′ P
µ
ν dt

−Km
` K

m′

`′ K
µ
ν

∫ 2π

0

T−mTm′Tµdφ

∫ 1

−1

m

(
m′t√
1− t2

Pm
′

`′ + Pm
′+1

`′

)
Pm` P

µ
ν dt
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The coefficient for the projection of the Lie bracket onto spherical harmonics can be determined by the above
integral, but it’s not quite in a form that’s easily computed. The individual components, howerver, are easily
decomposed into several easily computed components. The first and most obvious part is the independence
of the φ and t dependent portions of the above integral.
The derivations of the t components require a bit more refining through a combination of applications of the
Edmonds recurrence relations to reformulate the integrand as the linear combination of associated Legendre
polynomial triple products. Once reformulated as a linear combination of triple products the integrals can
easily be computed through an algorithm to compute Gaunt coefficients. The Edmonds recurrence relations
give, with the exception of a few situations, ways to expand the t terms that were not immediately linear
combinations of associated Legendre Polynomials into such functions.

t√
1− t2

Pm` =
1

2m
(
Pm+1
` + (`+m)(`−m+ 1)Pm−1

`

)

1√
1− t2

Pm` =
t√

1− t2
Pm(`−1) + ((`− 1) +m)Pm−1

(`−1)

=
1

2m

(
Pm+1

(`−1) + ((`− 1) +m)((`− 1)−m+ 1)Pm−1
(`−1)

)
+ ((`− 1) +m)Pm−1

(`−1)

=
1

2m
(
Pm+1
`−1 + (`+m− 1)(`−m)Pm−1

`−1

)
+ (`+m− 1)Pm−1

`−1

=
1

2m
(
Pm+1
`−1 + (`+m− 1)(`+m)Pm−1

`−1

)
The above relations cease to work if m = 0 but one must note that spherical harmonics only use associated

Legendre Polynomials where m ≥ 0 and in the cases where m or m′ could be 0 (such as mt√
1−t2P

m
` ) the

recurrence relations are unnecessary as m = 0 and so the integral of that component is 0. Once the terms
are expanded we have a sum of triple products of associated Legendre Polynomials (Pmn P

m′

n′ Pµν ) which can
then be calculated using Gaunt coefficients.
Since the product of trigonometric functions can be reduced to the sum of two trigonometric functions and
with m ∈ N they form an orthogonal basis on [0, 2π], First, here’s the different combinations of Tm∂Tm̄

∂φ that
can happen:

Tm
∂Tm̄
∂φ

−m̄ cos(mφ) sin(m̄φ) m > 0, m̄ > 0
m̄ cos(mφ) cos(m̄φ) m > 0, m̄ < 0
−m̄ sin(mφ) sin(m̄φ) m < 0, m̄ > 0
m̄ sin(mφ) cos(m̄φ) m < 0, m̄ < 0

Since the integral has been reduced to the integral of two trig functions and we know that the family that
we’re looking at has integral m, m̄, µ coefficients, they are an orthogonal family of polynomials and the
integral of two such trig functions is π. Therefore the following is the solution to all of the cases

m = 0→ Tm
∂Tm̄
∂φ := sgn(m̄)m̄πδm̄,µ m̄ = 0→ Tm

∂Tm̄
∂φ := 0

Tm
∂Tm̄
∂φ

−πm̄2 (−δm+m̄,−µ − sgn(m− m̄)δ|m−m̄|,−µ) m > 0, m̄ > 0
−πm̄2 (δ|m−m̄|,µ + δ|m+m̄|,µ) m > 0, m̄ < 0
−πm̄2 (δ|m−m̄|,µ − δ|m+m̄|,µ) m < 0, m̄ > 0
−πm̄2 (δm+m̄,µ + sgn(m− m̄)δ|m−m̄|,−µ) m < 0, m̄ < 0
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